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Abstract. Although the two-dimensional spin-; Ising model was solved in zero field in 
1944, no exact results are yet available for the spin-I model. This model should have the 
same dominant critical exponents as the spin-; model, but appears to exhibit non-analytic 
corrections to scaling as expected for a 94 model and unlike the spin-; model. In this 
paper new 45-term low temperature series for the magnetisation, specific heat and suscepti- 
bility of the spin-l model on the square lattice are presented and analysed. A new 24-term 
staggered susceptibility series for the hard square model is presented and the extant order 
parameter series for this model (which is also in the d4 universality class) are also considered. 
For both models a non-analytic confluent correction with exponent I .O < A ,  < 1.3 is found. 
The validity of this result is enhanced by a comparison with the S = 4 case. 

1. Introduction 

One of the anomalies in the area of phase transitions that has led to considerable 
complications is the absence of non-analytic corrections in the exactly solved spin-f 
Ising model. These corrections are predicted by renormalisation group (RG) theory 
(Wegner 1972) and are present in 3~ Ising models (Chen et al 1982, Adler et a1 1982b 
and references therein, Adler 1983a) and many other ZD systems (for example the 
exactly solved Baxter-Wu model (Joyce 1975, Adler 1983b), percolation (Adler et a1 
1982a, 1983b) and the three-state Potts model (Adler and Privman 1982, 1983a)). 
Neglect of their presence in 3~ Ising systems led to apparent violations of hyperscaling; 
however, it is now established that they are present, not only in the continuous spin 
model, but also for all spin values in 3~ except perhaps near one particular S value, 
where the amplitude of the non-analytic correction may vanish (Chen et a1 1982). It 
is the aim of the present paper to establish their presence for S = 1 in ZD, in agreement 
with RG predictions for a 44 system. We will also demonstrate their existence in 
another ZD 44 spin system, the hard square model (Baxter et a1 1980 and references 
therein). The method of analysis used in both cases is that developed by Adler et a1 
(1983b) from the transformation of Roskies (1981). For the S = 1 Ising model similar 
results are found with another method (Adler et a1 1981). 

In the exact solution for the 2~ spin-; Ising model analytic corrections to scaling 
are present and have recently been shown (Aharony and Fisher 1980, 1983) to arise 
via nonlinear scaling fields. These are probably also present in the spin-1 model, but 
should in no way preclude the observation of non-analytic corrections. The analytic 
correction to the (ZD spin-;) susceptibility and magnetisation can be clearly observed, 
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using the method of Adler et a1 (1983b); the non-analytic corrections obtained in the 
present work take a quite different form. 

In § 2 we present extended low temperature series for the S = 1 Ising model 
on the square lattice and a new series for the hard square model. Two of the low 
temperature series are analysed together with an extant hard square series in 9 3 to 
give estimates of T,, y, /3 and A i .  Some new results for spin-f are presented in 9 4 and 
discussion of all the results and a comparison with A ,  estimates from other methods 
given in § 4. The new series are presented in the appendix. We note that the S = 1 
Ising and hard square models are two of the simplest ways of generalising the 
S = $ Ising model to search for non-analytic corrections to scaling. 

2. Derivation of the new series 

The low temperature series expansions for the spin- 1 Ising model that we consider are 
essentially the same as those investigated by Fox and Guttmann (1973). We have 
extended the series from order u26 to u45 and have corrected a few minor errors. The 
main difference is that we begin by considering the partition function rather than the 
free energy. 

We write the Hamiltonian for the spin-1 Ising model as 

X =  J (  1 - SiS,) +I H(1- S , )  
(ij) I 

where as usual the first sum is over all bonds on the square lattice and the second sum 
is over all sites. The constants are included so that the ground state will have zero 
energy. This removes awkward constants from the finite lattice formalism without 
affecting the series. The spin variables S, can take values 1, 0, -1. 

The low-temperature/high-field expansion has been described by Sykes and Gaunt 
(1973). It is based on perturbations about the S, = 1 ground state and leads to a double 
power series in the variables 

(2.2a, b) 

If we concern ourselves with the temperature grouping i.e. the expansion in powers 
of U, then we have 

U = exp(-J/ kT),  p = exp(- H/ kT) .  

D) 

z = I .+  c Unvn(p)= I +u4p + 2 u 7 p 2  +. . , 
n = 4  

where V , ( p )  are polynomials in p. It is possible to re-express these polynomials as 
polynomials in x = 1 - p and to expand the partition function as 

z = ZO(U) + x Z , ( u )  + X 2 Z 2 ( U )  +. . . . (2.4) 
At zero field, x = 0 and we can define the free energy 

F = - kT In Zo( U), (2.5) 
the spontaneous magnetisation 

M(u)=M(O)+(8/dH)lnZ= 1 - Z , ( u ) / Z o ( u )  (2.6) 
and the initial susceptibility 
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These thermodynamic functions can be obtained with expansion (2.4) truncated at 
order x2. In the finite lattice calculations we can work in terms of U and 3 and truncate 
all intermediate expressions at order x2, giving a considerable reduction in the amount 
of computation required, compared with working with F. 

The following description of the finite lattice technique follows the formalism 
described by Enting (1978a), except for the use of one-site-at-a-time transfer matrices. 

We calculated finite lattice partition functions Z,, for rectangles of n sites by m 
sites, surrounded by a boundary of 2(n + m) sites whose spins were fixed into state 1. 
Thus 

(2.8) 
spin states ( i j )  I ) z,, = c exp( -pJ c (1 - S~S,)  - p H  (1 - Si)  

where 
(i) the sum over spin states is over all 3"" states of the spins in the rectangle, 
(ii) the sum over bonds is over all 2nm + m + n bonds that connect a spin in the 

rectangle to another such spin or to one of the boundary spins, 
(iii) the sum over spins is over all nm spins in the rectangle. 
It is widely known that we can obtain series expansions from the approximation 

Relation (2.8) is possibly most familiar in the form obtained by taking the logarithms 
of each side: the free energy is a linear combination of finite lattice free energies. The 
combinatorial ideas go back at least to the work of Hijmans and de Boer (1955). Enting 
(1978b) gave explicit expressions for the U,,,,, in many cases. 

For the spin-1 Ising model (and most other temperature grouping problems) it is 
most efficient to use 

U,,, = 1 if m + n  =2wmax + 1 

if m + n = 2wmax 

if m + n  =2wma, -  1 

if m + n  = 2wmax - 2  

= -3 

= 3  

= -1 

= O  otherwise (2.10) 

where U,,, is the largest width for which we can calculate Z,, (exploiting the Z,, = Zn, 
symmetry). 

The number of terms given correctly by (2.9) is determined by the power of the 
lowest-order connected graph that does not fit into any of the rectangles considered. 
With the 'cut-off' given by (2.10) the pertinent graphs are chains of 2w,,,+ 1 = r sites 
all in the '0' state. These have power u ~ ~ + '  and so the series will be correct to order 
u~~ = ~ ~ ~ m a i ~ ~ .  We have used wmax=7 which means that our series should be correct 
through u4'. We have explicitly checked the predicted form of the cut-off by repeating 
our calculations using w = 1,2,3,4,5 and 6 noting that only terms to u6w+3 agree with 
our final series. 

The real power of the finite lattice method comes from the fact that the Z,, can 
be easily calculated using transfer matrix techniques. The most efficient form seems 
to be to use a formalism that adds one site at a time rather than one row at a time. 
This type of transfer matrix has been described by Enting (1980) in connection with 
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polygon enumerations. As well as speeding up the computation, the use of these 
transfer matrices simplifies the procedures for calculating transfer matrix elements so 
that we can avoid having to store a set of 2187 x2187 transfer matrix elements. (Enting 
(1978a) pointed out several special cases in which matrix elements of conventional 
row-at-a-time transfer matrices can be easily obtained. The site-at-a-time transfer 
matrices make this trick feasible for a wider class of interactions.) The calculations 
were performed using residue arithmetic modulo five different prime numbers. This 
means that the series are correct modulo X = II:= I (2'' - ai), with ai = 19, 49, 5 1, 55 
and 61. 

The final terms (u2' and uZ6) given by Fox and Guttmann (1973) disagree with the 
series that we have given in the appendix. A comparison indicates that Fox and 
Guttmann have most probably omitted a contribution of 4pI4u2'. We are not able to 
deduce a probable form of the p-dependent correction at order u~~ because the 
discrepancy appears to involve several powers of p. 

The degree of automation in the spin-1 series calculations together with the con- 
sistency checks involved in using various widths lead us to believe that our series are 
correct. 

For the hard square model, series for the order parameter (i.e. the staggered density) 
were taken from Baxter et a1 (1980). They did not obtain series for the staggered 
susceptibility because no staggered field was included in their calculations. They were 
also able to obtain series for the staggered density by making use of the distinction 
between the sublattices. In the appendix we present shorter series for the low-density 
staggered susceptibility. These have been calculated using the techniques described 
by Enting (1978a, b), and are an extension of the series given by Gaunt and Fisher (1965). 

3. Results for T,, y ,  p and A, 

The series for M (  U), ,y( U) and C,( U) for the S = 1 model are assumed to have critical 
behaviour of the forms 

M ( u )  - (U, - U ) P [  1 + U ,  M ( U ,  - 

,y(U)-(u,-U)-y[l + a , x ( u , - U ) A ~ + b l x ( U , - U ) + .  . .], (3.2) 

c"(U)-(U,-u)-"[l + a , c ( u , - u ) A ~ + b l c ( u , - u ) + .  . .]. (3.3) 

+ b , M ( U ,  - U) +. . .], (3.1) 

Although in the case of the S = i  model the U ,  are zero, the exponents in the S =  1 
case are expected (by universality) to take the S = f values p =A, y = and a = 0. We 
have analysed these series with the usual Dlog Pad6 approximant technique; some 
selected approximants are presented in table 1 and for purposes of comparison 
approximants for the S = magnetisation are also given. We see very consistent 
behaviour in the spin-f model but the spin-I results are less internally consistent and 
furthermore the exponent results for the spin-1 model are not in complete agreement 
with the exact results. With the exception of the C, results typical Pad& are presented. 
In both the spin-1 and spin-f magnetisation series a very few Padis (for example the 
[23, 211 and [20, 191 PadCS respectively) have residues quite different to the majority. 
This may be related to a phenomenon that is discussed in 9 4  below. Analysis with 
the usual Dlog Pad6 approximant technique is equivalent to assuming a ,  = 0 (Adler 
et a1 1982a). However, for the S = 1 model we suspect a ,  # 0 since this is the RG 
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Table 1. (a) Estimates for U, and P from the [L, M I  Pad6 approximant to the M ( u )  series 
for S =  1. 

N 

PO, 241 
0.554 128 
0.126040 

PO, 231 
0.554 154 
0.114697 

L7-0, 221 
0.554 145 
0.126 228 

[19,221 
0.554 252 
0.118 186 

[21,23] [22,22] [23,21] [24,20] 
0.554 148 0.554 126 0.554 139 0.554 138 
0.126260 0.126019 0.025961 4 0.126 15 

P I ,  221 [22,211 [23,201 
0.554 156 0.554 137 0.554 137 
0.122 226 0.133 767 0.127 869 

[21,7.11 [22,201 ~ 3 , 1 9 1  
0.554 284 0.554 139 0.554 138 
0.127 593 0,139675 0.126 135 

[20, 2 11 [21,201 ~ 2 , 1 9 1  
0.554 053 0.553 984 0.554 133 
0.125 255 0. I24 482 0. I30 351 

Table 1. ( b )  Estimates for U, and y from the [L, M I  Pad6 approximant to the ~ ( u )  series. 

N 

[18,221 
0.554 432 
1.825 31 

[18,211 
0.554410 
1.822 65 

[16,221 
0.553 675 
1.747 86 

~ 7 , 2 0 1  
0.553 197 
1.712 80 

[19,211 
0.554 431 
1.825 18 

[19,201 
0.555 036 
1.908 54 

[18,201 
0.556 397 
2. I76 53 

[18, 191 
0.554 586 
1.846 82 

[20,20] [21, 191 [22, 181 
0.554 929 0.554 847 0.554 647 
1.89276 1.901 04 1.85282 

[20, 191 [22, 171 
0.554 996 0.554 45 I 
1.723 55 1.827 74 

[19, 191 [20, 181 [21, 171 
0.554 892 0.554 274 0.554 089 
1.258 51 1.294 1 1.785 75 

[19, 181 [21, 161 
0.553 233 0 0.553 443 
1.69957 1.71834 

Table 1. (c) Estimates for U, and a from the [L, MI Pad6 approximant to the C,(u) series. 

[L, M I  115,251 [ I  5,241 [ 14,241 
U, 0.523 82 0.525 201 0.523 832 
a 0.030 390 6 0.019 843 8 0.038 706 5 

[L, MI [13,241 [16,211 [ I  2,241 
U, 0.522 501 0.51 1 163 0.522 533 
a 0.061 298 6 0.006 293 6 I 0.002 869 3 
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Table 1. ( d )  Estimates for U, and P from the [L ,  MI Pad6 approximant to the M ( u )  series 
for s=t .  

N 

[9, 101 
0.171 572 
0.124 999 

P3, 101 
0.171 572 
0.124 999 

[ 19,201 
0.171 572 
0.125 000 

[18,201 
0.171 572 
0.125 000 

20 term series 
[IO, 91 
0.171 572 
0.124 999 

[9,91 
0.171 572 
0.125 000 

40 term series 
12% 191 
0.171 572 
0.000 969 

[19, 191 
0.171 572 
0. I25 000 

[IO, 81 
0.171 572 
0.124 999 

121, 181 
0.171 572 
0. I25 000 

P O ,  181 
0.171 572 
0.125 000 

prediction and we expect that the D = 2 spin-f Ising model is a very special exception 
to this general behaviour. The predicted values for the exponent A I  are 1.4 (Le Guillou 
and Zinn-Justin 1980) and 1.4k 0.8 (Baker et a1 1978, Baker 1983). Thus it is interesting 
to see what the effect of A I  # 1 is on the estimates of y, p and U,. 

We’have studied this effect and made an independent evaluation of A ,  with the 
methods of Adler et a1 (1983b) and Adler er a1 (1981). The former method involves 
minimising the effect of the correction on the evaluation of the dominant exponent, 
and is a generalisation of the transform of Roskies (1981), whereas the latter method 
gives us a corroborating estimate of A l .  In the former method we transform the series 
A ( u )  in U to ones in 

y =  1 - (1  -u/uc)Al 

and then look at different Pad6 approximants to the function 

GdY) = 4 Y  - l)(d/dy)(ln A(.Y)) = h -p/U +PI 

where h is the dominant exponent and p = alutlA,(y - l)Ab’A. The correction term p 
becomes zero when U = U, and A = A , .  We evaluate the Pad6 approximants for a range 
of guesses at U, and A ;  for the correct A ,  and U, these Pad6 approximants should 
intersect and give a correct estimate for the dominant exponent. For a model where 
neither U, nor A ,  are known we search for the best convergence in the (U,, h, A , )  space 
(Adler 1983a); here, however, we know the values of the dominant exponents via 
universality arguments and thus we search for the best A ,  and U, consistent with these. 
We note that a very strong check of the validity of our results is if the same U, and 
A ,  values are observed for all quantities studied, and if the best convergence is indeed 
found for the universal values of the dominant exponents. The latter method is believed 
(Adler et a1 1983b) to be most reliable for A ,  close to 1.0. It involves studying Pad6 
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approximants to the logarithmic derivative of B( U )  where 

B( U) = hA( U) +(U, - U) dA( U)/ d U. 

This logarithmic derivative has a pole at U, with residue h +A, ;  thus here the input 
into the calculation is U, and h. We may again search for intersection regions of the 
different Pad6 approximants in the U,, h, A, plane and the A ,  estimates from this 
method should be consistent with those of the former one. 

We have analysed both the magnetisation and the susceptibility series with the 
former method and the magnetisation series with the latter method. The Pad6 results 
from the specific heat series were not sufficiently defect and problem free to justify 
further study. The results of the susceptibility analysis are presented in figure 1 and 
the results of the magnetisation analysis by the former method are presented in figure 
2. We find that the best convergence for y = 1.75 and p = 0.125 is found for U, - 0.554 06 
in both cases. Furthermore A ,  estimates are centred around 1.175 in both cases. We 
present the alternative magnetisation analysis for U, = 0.554 06 in figure 3 and here 
observe that A,  is again close to or slightly above 1.175. By looking at plots for 
0.5530 < U, < 0.5542 we find the A,  estimate to be 

l.O<A, < 1.3. 

In both cases A ,  estimates decrease as U, increases. Allowing for ranges 0.12 < p < 0.13 
and 1.7 < y < 1.8 we find 0.5538 < U, < 0.5542. 

0 8  10 11 12 0 4  0 6  0 8  10  11 12 
A A 

Figure 1. Graph of y against A for the low tem- 
perature susceptibility of the spin-1 Ising model at 
U, = 0.554 06. 

Figure 2. Graph of p against A for the magnetisation 
of the spin-1 Ising model at U, = 0.554 06, using the 
method of Adler et a1 (1982a). 

We note that in figures 1 and 2 the exponent values near A,  = 1.0 are similar to 
those obtained in the Pad6 study (see above), y 3 1.76 and P d 0.1255, thus supporting 
our statement that the Pad6 results are equivalent to A ,  = 1.0. 

We now consider the hard square series. The series that we consider in depth is 
that for the staggered density R (as a function of x, the inverse of the activity) which 
is the analogue of the magnetisation. If the hard square model indeed falls in the 44 
universality class these quantities should have the same dominant exponent p. The R 
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series (Baxter et a1 1980) are 24 terms long and alternate regularly in sign. The results 
for p c  = 0.263 413 are shown in figure 4. We observe that there is an intersection region 
exactly at p = and that 1.2 < A I  < 1.4. If we consider the range 0.263 41 < U, < 0.263 42 
we find 1.0< A ,  < 1.3. We have also studied R as a function of p ‘ =  1 -2p, where p is 
the density. 

0 1248 
0 120- 

p 0124- 

o 128 0 1254 

0 132- 
0 4  0 6  0 8  1 0  1 2  1 4  0 9  1 0  1 1  1 2  1 3  1 4  

A A 

Figure3. GraphofP against A forthe magnetisationofthe 
spin-1 Ising model at U, = 0.554 06, using the method of 
Adler et al (1981). 

Figure4. Graph of p against A for the hard square 
staggered density R at pc = 0.263 413. 

This quantity should have a critical exponent of p /  1 - a ; however, Baxter et a1 
were unable to obtain the expected exponent of from a Pad6 analysis. We met with 
a similar lack of success, although for p ’ -  0.2648 we obtain clear convergence with 
1.0 < A ,  < 1.2. We do not find clear convergence within the range 0.264* 0.002 given 
by Baxter et a1 although at the bottom of the range (-0.2638) the results are not 
inconsistent with p = $. We were unable to analyse the staggered susceptibility series 
with Pad6 methods. 

4. New results for the spin-; Ising model 

In this section we present some previously unpublished results for the spin-; Ising 
model; these will be used as a basis for comparison with the above. 

In figure 5 we show a new analysis of Nickel’s (1982) 34-term high temperature 
susceptibility series. Here we have a clear case of an analytic correction, and indeed 
excellent convergence is observed for y = 1.75 and A ,  = 1 .O We also have convergence 
at y = 1.75 and A I  = 0.5 and again near y - 1.75 and A ,  - 0.33. The convergences at 
y - 1.75 for A ,  = 0.5 and 0.33 appear to be ‘resonances’. These have been previously 
obtained by Privman (1983), who studied test series with the method of Adler et a1 
(1983b), but do not appear to have been seen previously in studies of ‘real’ systems. 
Privman (1983) explains that these ‘resonances’ at values of A , = A , / k ,  where k =  
2,3, .  . . , are to be expected in this method; the surprising fact is that they were not 
previously observed. They have recently also been observed in the specific heat series 
for the Baxter-Wu model (Adler 1983b). Both these quantities are exactly solvable 
and apparently lack the type of terms that destroy (Privman 1983) the convergence 
regions for k >  1. We note that all these ‘resonances’ fall at the same value of y as 
the main convergence region near A ,  = 1 ; and from the ratio of A ,  values it is thus 
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1755 

1750 

1 1145 

1.740 

1735 

0 2  0 4  0 6  0 8  1 0  1 2  1 4  
A 

Figure 5. Graph of y against A for the high temperature susceptibility of the spin-i k ing  
model at the critical temperature. The series is the 32-term series of Nickel (1982). 

easy to see which is the correct A I  value. The ‘resonance’ near A = O S  explains the 
observations of Roskies ( 198 1 ), who found that applying the transformation 

gave the correct values of U, and y for the spin-f model in 2 ~ ,  as well as giving the 
RG values in 3 ~ .  One can now observe that this was a very fortunate coincidence, 
since Roskies’ result implied A I  = 0.5 in 2~ which is certainly not the case. 

In figure 6 we show the S = f magnetisation curve for a series of 20 terms. There 
is an intersection region near A I  - 1.0 with ‘resonances’ near A I  -0.1 and 0.3. The 
reason that we chose to display the 20-term series is rather interesting. If we consider 
the highest central Padis in tables for successively longer series the results usually 
converge as the length of the series increases. Ratio analysis also becomes more 

0 1246 

0 1248- 

0 1250- 

0 1252. 

01254 

0 4  0 6  0 8  1 0  1 2  
A 

Figure 6. Graph of p against A for the magnetisation of the spin-f Ising model at the exact 
U,. We have obtained this 20-term series by expansion of the exact magnetisation. 
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convergent as the series becomes longer. For Pad& analysis this appears, however, 
only to be true up to a certain point. When working with very long (say, 40-term) 
series we do not always observe consistent results for high central approximants; two 
examples have been given in 0 3. This may be due to problems of machine accuracy 
(although we used 32-figure accuracy throughout our analysis). A similar problem 
occurs when we take Pad& approximants to the function GA(y).  If we look at any of 
the figures 1, 2, 4 or 5 we see that certain Padis deviate suddenly from the general 
area and then return. For example, in figure 2 one Pad& follows a path with p well 
below 0.124 near A ,  = 1 .  Thus at A I  = 1 this Pad& would have a residue << 0.124 in 
disagreement with the others. This phenomenon usually occurs quite rarely but its 
incidence increases as the length of series increases. The nature and location of the 
intersection region may improve at the same time. For series that are expansions of 
exact solutions (such as the spin-f Ising or Baxter-Wu magnetisation) this phenomenon 
seems to occur for relatively few terms in the series, although the location of the 
intersection region does not seem to move (Adler 1983b). These deviations make the 
graphs rather confused and thus we present the 20-term graph and in figure 7 we show 
the spin-1 magnetisation for the 20-term series for comparison. We see that the curves 
are very different and there are no ‘resonances’ for A / k  with k >  1. For the 40-term 
spin-1 series (figure 2) we do see a ‘resonance’ at 0.6 and this is to date the only 
non-exactly solved model where this phenomenon has been observed. 

0.10 

012 

0 15 

0 4  0 6  0 8  1 0  1 2  1 4  
A 

Figure 7. Graph of p against A for the magnetisation of the spin-1 Ising model at 
U, = 0.554 06. This graph is for a 20-term series and comparison with figure 6 shows that 
the spin-I and spin-; magnetisations are quite different. 

5. Discussion 

In the preceding sections we have investigated the critical behaviour of the spin-1 and 
spin-f Ising models and the hard square model, all of which are supposed to have the 
same dominant exponents. We have presented new series for the spin-1 and hard 
square models, and it is to be hoped that other methods of series analysis will be 
applied to these series in the near future. 

We have shown that the spin-1 and hard square models exhibit critical behaviour 
of the form of equations (3.1) and (3.2) with a I M  and a,* # 0 and 1.0 < A l  < 1.3, whereas 
it is known for the spin-f model that a l M  and a , ,  = 0, and only b l M  and b,,  # 0. The 
results of § 4 demonstrate that our techniques are well capable of providing an accurate 
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description of the analytic correction terms that occur in the spin-i model and thus 
can distinguish between the two possibilities. 

There is a constant danger in this kind of work that higher correction terms influence 
the value of the first correction term and that the A ,  # 1 we claim to identify is in fact 
an analytic term. We feel that we can exclude this possibility on the basis that the 
spin-; curves give a clear analytic ( A  = 1) term and, furthermore, the 44 estimate (see 
§ 3) is A ,  - 1.4. Since we do not know U, exactly we cannot prove this beyond all 
shadow of doubt, nor can we exclude the kind of behaviour recently envisaged (Adler 
1983c) for the self-avoiding walk on the honeycomb lattice. This latter scenario finds 
both an intersection at A - 1.2 and an intersection near either A = 1 or A < 1, whereas 
the field theoretic result is A ,  - 1.2. However, the strong agreement between the different 
methods of analysis and the comparison with S = f suggests that in this case we do 
have A ,  > 1 for the spin-1 and hard square models. We suggest 1.0 < A ,  < 1.3. 

A new U, value for the spin-1 Ising model on the square lattice is also proposed. 
We suggest 0.5538 < U, < 0.5542 with a central value of U, = 0.554 06 on the basis that 
the best agreement between the dominant exponents of the spin- 1 model and the spin-f 
value is found for this value. This U, value replaces the U, = 0.5533 * 0.0012 from Fox 
and Guttmann (1973). 
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Appendix 

New series for the spin-1 2~ Ising magnetisation ( M ( u )  = X, m,un),  susceptibility 
(x(u) = E,, x,u")  and specific heat ( C ,  = E, c,un). 
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New series for the staggered susceptibility ( ~ ' ( p )  =E?=, r,,p") ofthe hard square model 
as a function of density. 
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