The two-dimensional spin-1 Ising system and related models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 172233
(http://iopscience.iop.org/0305-4470/17/11/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:06

Please note that terms and conditions apply.

The two-dimensional spin-1 Ising system and related models

Joan Adler \dagger and I G Enting \ddagger
\dagger Solid State Institute and Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
\ddagger CSIRO, Division of Atmospheric Research, Private Bag No 1, Mordialloc, Victoria, Australia, 3195

Received 7 July 1983, in final form 1 March 1984

Abstract

Although the two-dimensional spin- $\frac{1}{2}$ Ising model was solved in zero field in 1944, no exact results are yet available for the spin-1 model. This model should have the same dominant critical exponents as the spin- $\frac{1}{2}$ model, but appears to exhibit non-analytic corrections to scaling as expected for a ϕ^{4} model and unlike the spin- $\frac{1}{2}$ model. In this paper new 45 -term low temperature series for the magnetisation, specific heat and susceptibility of the spin-1 model on the square lattice are presented and analysed. A new 24 -term staggered susceptibility series for the hard square model is presented and the extant order parameter series for this model (which is also in the ϕ^{4} universality class) are also considered. For both models a non-analytic confluent correction with exponent $1.0<\Delta_{1}<1.3$ is found. The validity of this result is enhanced by a comparison with the $S=\frac{1}{2}$ case.

1. Introduction

One of the anomalies in the area of phase transitions that has led to considerable complications is the absence of non-analytic corrections in the exactly solved spin- $\frac{1}{2}$ Ising model. These corrections are predicted by renormalisation group (RG) theory (Wegner 1972) and are present in 3D Ising models (Chen et al 1982, Adler et al 1982b and references therein, Adler 1983a) and many other 2D systems (for example the exactly solved Baxter-Wu model (Joyce 1975, Adler 1983b), percolation (Adler et al 1982a, 1983b) and the three-state Potts model (Adler and Privman 1982, 1983a)). Neglect of their presence in 3D Ising systems led to apparent violations of hyperscaling; however, it is now established that they are present, not only in the continuous spin model, but also for all spin values in 3D except perhaps near one particular S value, where the amplitude of the non-analytic correction may vanish (Chen et al 1982). It is the aim of the present paper to establish their presence for $S=1 \mathrm{in} 2 \mathrm{D}$, in agreement with RG predictions for a ϕ^{4} system. We will also demonstrate their existence in another 2D ϕ^{4} spin system, the hard square model (Baxter et al 1980 and references therein). The method of analysis used in both cases is that developed by Adler et al (1983b) from the transformation of Roskies (1981). For the $S=1$ Ising model similar results are found with another method (Adler et al 1981).

In the exact solution for the 2 D spin- $\frac{1}{2}$ Ising model analytic corrections to scaling are present and have recently been shown (Aharony and Fisher 1980, 1983) to arise via nonlinear scaling fields. These are probably also present in the spin-1 model, but should in no way preclude the observation of non-analytic corrections. The analytic correction to the (2 D spin $-\frac{1}{2}$) susceptibility and magnetisation can be clearly observed,
using the method of Adler et al (1983b); the non-analytic corrections obtained in the present work take a quite different form.

In § 2 we present extended low temperature series for the $S=1$ Ising model on the square lattice and a new series for the hard square model. Two of the low temperature series are analysed together with an extant hard square series in $\S 3$ to give estimates of T_{c}, γ, β and Δ_{1}. Some new results for spin $-\frac{1}{2}$ are presented in $\S 4$ and discussion of all the results and a comparison with Δ_{1} estimates from other methods given in §4. The new series are presented in the appendix. We note that the $S=1$ Ising and hard square models are two of the simplest ways of generalising the $S=\frac{1}{2}$ Ising model to search for non-analytic corrections to scaling.

2. Derivation of the new series

The low temperature series expansions for the spin-1 Ising model that we consider are essentially the same as those investigated by Fox and Guttmann (1973). We have extended the series from order u^{26} to u^{45} and have corrected a few minor errors. The main difference is that we begin by considering the partition function rather than the free energy.

We write the Hamiltonian for the spin-1 Ising model as

$$
\begin{equation*}
\mathscr{H}=\sum_{\langle i j\rangle} J\left(1-S_{i} S_{j}\right)+\sum_{i} H\left(1-S_{i}\right) \tag{2.1}
\end{equation*}
$$

where as usual the first sum is over all bonds on the square lattice and the second sum is over all sites. The constants are included so that the ground state will have zero energy. This removes awkward constants from the finite lattice formalism without affecting the series. The spin variables S_{I} can take values $1,0,-1$.

The low-temperature/high-field expansion has been described by Sykes and Gaunt (1973). It is based on perturbations about the $S_{i}=1$ ground state and leads to a double power series in the variables

$$
\begin{equation*}
u=\exp (-J / k T), \quad \mu=\exp (-H / k T) \tag{2.2a,b}
\end{equation*}
$$

If we concern ourselves with the temperature grouping i.e. the expansion in powers of u, then we have

$$
\begin{equation*}
Z=1+\sum_{n=4}^{\infty} u^{n} \Psi_{n}(\mu)=1+u^{4} \mu+2 u^{7} \mu^{2}+\ldots \tag{2.3}
\end{equation*}
$$

where $\Psi_{n}(\mu)$ are polynomials in μ. It is possible to re-express these polynomials as polynomials in $x=1-\mu$ and to expand the partition function as

$$
\begin{equation*}
Z=Z_{0}(u)+x Z_{1}(u)+x^{2} Z_{2}(u)+\ldots \tag{2.4}
\end{equation*}
$$

At zero field, $x=0$ and we can define the free energy

$$
\begin{equation*}
F=-k T \ln Z_{0}(u) \tag{2.5}
\end{equation*}
$$

the spontaneous magnetisation

$$
\begin{equation*}
M(u)=M(0)+(\partial / \partial H) \ln Z=1-Z_{1}(u) / Z_{0}(u) \tag{2.6}
\end{equation*}
$$

and the initial susceptibility

$$
\begin{equation*}
\chi=k T\left[2 Z_{2}(u) / Z_{0}(u)-Z_{1}(u) / Z_{0}(u)-\left(Z_{1}(u) / Z_{0}(u)\right)^{2}\right] . \tag{2.7}
\end{equation*}
$$

These thermodynamic functions can be obtained with expansion (2.4) truncated at order x^{2}. In the finite lattice calculations we can work in terms of u and x and truncate all intermediate expressions at order x^{2}, giving a considerable reduction in the amount of computation required, compared with working with μ.

The following description of the finite lattice technique follows the formalism described by Enting (1978a), except for the use of one-site-at-a-time transfer matrices.

We calculated finite lattice partition functions $Z_{m n}$ for rectangles of n sites by m sites, surrounded by a boundary of $2(n+m)$ sites whose spins were fixed into state 1 . Thus

$$
\begin{equation*}
Z_{n m}=\sum_{\text {spin states }} \exp \left(-\beta J \sum_{\langle i j\rangle}\left(1-S_{i} S_{j}\right)-\beta H \sum_{i}\left(1-S_{i}\right)\right) \tag{2.8}
\end{equation*}
$$

where
(i) the sum over spin states is over all $3^{n m}$ states of the spins in the rectangle,
(ii) the sum over bonds is over all $2 n m+m+n$ bonds that connect a spin in the rectangle to another such spin or to one of the boundary spins,
(iii) the sum over spins is over all $n m$ spins in the rectangle.

It is widely known that we can obtain series expansions from the approximation

$$
\begin{equation*}
Z \approx \prod_{m, n} Z_{m n}^{a_{m n}} \tag{2.9}
\end{equation*}
$$

Relation (2.8) is possibly most familiar in the form obtained by taking the logarithms of each side: the free energy is a linear combination of finite lattice free energies. The combinatorial ideas go back at least to the work of Hijmans and de Boer (1955). Enting (1978b) gave explicit expressions for the $a_{m n}$ in many cases.

For the spin-1 Ising model (and most other temperature grouping problems) it is most efficient to use

$$
\begin{align*}
a_{m n} & =1 & & \text { if } m+n=2 \omega_{\max }+1 \\
& =-3 & & \text { if } m+n=2 \omega_{\max } \\
& =3 & & \text { if } m+n=2 \omega_{\max }-1 \\
& =-1 & & \text { if } m+n=2 \omega_{\max }-2 \\
& =0 & & \text { otherwise } \tag{2.10}
\end{align*}
$$

where $\omega_{\max }$ is the largest width for which we can calculate $Z_{m n}$ (exploiting the $Z_{m n}=Z_{n m}$ symmetry).

The number of terms given correctly by (2.9) is determined by the power of the lowest-order connected graph that does not fit into any of the rectangles considered. With the 'cut-off' given by (2.10) the pertinent graphs are chains of $2 \omega_{\max }+1=r$ sites all in the ' 0 ' state. These have power $u^{3 r+1}$ and so the series will be correct to order $u^{3 r}=u^{6 \omega_{\max }+3}$. We have used $\omega_{\max } \approx 7$ which means that our series should be correct through u^{45}. We have explicitly checked the predicted form of the cut-off by repeating our calculations using $\omega=1,2,3,4,5$ and 6 noting that only terms to $u^{6 \omega+3}$ agree with our final series.

The real power of the finite lattice method comes from the fact that the $Z_{m n}$ can be easily calculated using transfer matrix techniques. The most efficient form seems to be to use a formalism that adds one site at a time rather than one row at a time. This type of transfer matrix has been described by Enting (1980) in connection with
polygon enumerations. As well as speeding up the computation, the use of these transfer matrices simplifies the procedures for calculating transfer matrix elements so that we can avoid having to store a set of 2187×2187 transfer matrix elements. (Enting (1978a) pointed out several special cases in which matrix elements of conventional row-at-a-time transfer matrices can be easily obtained. The site-at-a-time transfer matrices make this trick feasible for a wider class of interactions.) The calculations were performed using residue arithmetic modulo five different prime numbers. This means that the series are correct modulo $X=\Pi_{i=1}^{s}\left(2^{15}-a_{i}\right)$, with $a_{i}=19,49,51,55$ and 61 .

The final terms (u^{25} and u^{26}) given by Fox and Guttmann (1973) disagree with the series that we have given in the appendix. A comparison indicates that Fox and Guttmann have most probably omitted a contribution of $4 \mu^{14} u^{25}$. We are not able to deduce a probable form of the μ-dependent correction at order u^{26} because the discrepancy appears to involve several powers of μ.

The degree of automation in the spin- 1 series calculations together with the consistency checks involved in using various widths lead us to believe that our series are correct.

For the hard square model, series for the order parameter (i.e. the staggered density) were taken from Baxter et al (1980). They did not obtain series for the staggered susceptibility because no staggered field was included in their calculations. They were also able to obtain series for the staggered density by making use of the distinction between the sublattices. In the appendix we present shorter series for the low-density staggered susceptibility. These have been calculated using the techniques described by Enting (1978a, b), and are an extension of the series given by Gaunt and Fisher (1965).

3. Results for T_{c}, γ, β and Δ_{1}

The series for $M(u), \chi(u)$ and $C_{v}(u)$ for the $S=1$ model are assumed to have critical behaviour of the forms

$$
\begin{align*}
& M(u) \sim\left(u_{\mathrm{c}}-u\right)^{\beta}\left[1+a_{1 M}\left(u_{\mathrm{c}}-u\right)^{\Delta_{1}}+b_{1 M}\left(u_{\mathrm{c}}-u\right)+\ldots\right], \tag{3.1}\\
& \chi(u) \sim\left(u_{\mathrm{c}}-u\right)^{-\gamma}\left[1+a_{1 \chi}\left(u_{\mathrm{c}}-u\right)^{\Delta_{1}}+b_{1 \chi}\left(u_{\mathrm{c}}-u\right)+\ldots\right], \tag{3.2}\\
& C_{v}(u) \sim\left(u_{\mathrm{c}}-u\right)^{-\alpha}\left[1+a_{1 C}\left(u_{\mathrm{c}}-u\right)^{\Delta_{1}}+b_{1 C}\left(u_{\mathrm{c}}-u\right)+\ldots\right] . \tag{3.3}
\end{align*}
$$

Although in the case of the $S=\frac{1}{2}$ model the a_{1} are zero, the exponents in the $S=1$ case are expected (by universality) to take the $S=\frac{1}{2}$ values $\beta=\frac{1}{12}, \gamma=\frac{7}{4}$ and $\alpha=0$. We have analysed these series with the usual Dlog Padé approximant technique; some selected approximants are presented in table 1 and for purposes of comparison approximants for the $S=\frac{1}{2}$ magnetisation are also given. We see very consistent behaviour in the spin $-\frac{1}{2}$ model but the spin- 1 results are less internally consistent and furthermore the exponent results for the spin-1 model are not in complete agreement with the exact results. With the exception of the C_{v} results typical Padés are presented. In both the spin-1 and spin- $\frac{1}{2}$ magnetisation series a very few Padés (for example the [23,21] and [20,19] Padés respectively) have residues quite different to the majority. This may be related to a phenomenon that is discussed in $\S 4$ below. Analysis with the usual Dlog Padé approximant technique is equivalent to assuming $a_{1}=0$ (Adler et al 1982a). However, for the $S=1$ model we suspect $a_{1} \neq 0$ since this is the RG

Table 1. (a) Estimates for u_{c} and β from the [L, M] Padé approximant to the $M(u)$ series for $S=1$.

N						
44	$[L, M]$	$[20,24]$	$[21,23]$	$[22,22]$	$[23,21]$	$[24,20]$
	u_{c}	0.554128	0.554148	0.554126	0.554139	0.554138
	β	0.126040	0.126260	0.126019	0.0259614	0.12615
43	$[L, M]$	$[20,23]$	$[21,22]$	$[22,21]$	$[23,20]$	
	u_{c}	0.554154	0.554156	0.554137	0.554137	
	β	0.114697	0.122226	0.133767	0.127869	
42	$[L, M]$	$[20,22]$	$[21,21]$	$[22,20]$	$[23,19]$	
	u_{c}	0.554145	0.554284	0.554139	0.554138	
	β	0.126228	0.127593	0.139675	0.126135	
41	$[L, M]$	$[19,22]$	$[20,21]$	$[21,20]$	$[22,19]$	
	u_{c}	0.554252	0.554053	0.553984	0.554133	
	β	0.118186	0.125255	0.124482	0.130351	

Table 1. (b) Estimates for u_{c} and γ from the [L, M] Padé approximant to the $\chi(u)$ series.

N						
40	$[L, M]$	$[18,22]$	$[19,21]$	$[20,20]$	$[21,19]$	$[22,18]$
	u_{c}	0.554432	0.554431	0.554929	0.554847	0.554647
	γ	1.82531	1.82518	1.89276	1.90104	1.85282
39	$[L, M]$	$[18,21]$	$[19,20]$	$[20,19]$	$[22,17]$	
	u_{c}	0.554410	0.555036	0.554996	0.554451	
	γ	1.82265	1.90854	1.72355	1.82774	
38	$[L, M]$	$[16,22]$	$[18,20]$	$[19,19]$	$[20,18]$	$[21,17]$
	u_{c}	0.553675	0.556397	0.554892	0.554274	0.554089
	γ	1.74786	2.17653	1.25851	1.2941	1.78575
37	$[L, M]$	$[17,20]$	$[18,19]$	$[19,18]$	$[21,16]$	
	u_{c}	0.553197	0.554586	0.5532330	0.553443	
	γ	1.71280	1.84682	1.69957	1.71834	

Table 1. (c) Estimates for u_{c} and α from the [L, M] Padé approximant to the $C_{v}(u)$ series.

$[L, M]$	$[15,25]$	$[15,24]$	$[14,24]$
u_{c}	0.52382	0.525201	0.523832
α	0.0303906	0.0198438	0.0387065
$[L, M]$	$[13,24]$	$[16,21]$	$[12,24]$
u_{c}	0.522501	0.511163	0.522533
α	0.0612986	0.00629361	0.0028693

Table 1. (d) Estimates for u_{c} and β from the [L, M] Padé approximant to the $M(u)$ series for $S=\frac{1}{2}$.

N				
19	$[L, M]$	$[9,10]$	20 term series	
	u_{c}	0.171572	$[10,9]$	
	β	0.124999	0.171572	
18	$[L, M]$	$[8,10]$		$[9,9]$
	u_{c}	0.171572	0.171572	$[10,8]$
	β	0.124999	0.125000	0.171572
				0.124999
39	$[L, M]$	$[19,20]$	40 term series	
	u_{c}	0.171572	$[20,19]$	$[21,18]$
	β	0.125000	0.171572	0.171572
38	$[L, M]$	$[18,20]$	0.000969	0.125000
	u_{c}	0.171572	$[19,19]$	$[20,18]$
	β	0.125000	0.171572	0.171572
		0.125000	0.125000	

prediction and we expect that the $D=2$ spin $-\frac{1}{2}$ Ising model is a very special exception to this general behaviour. The predicted values for the exponent Δ_{1} are 1.4 (Le Guillou and Zinn-Justin 1980) and 1.4 ± 0.8 (Baker et al 1978, Baker 1983). Thus it is interesting to see what the effect of $\Delta_{1} \neq 1$ is on the estimates of γ, β and u_{c}.

We have studied this effect and made an independent evaluation of Δ_{1} with the methods of Adler et al (1983b) and Adler et al (1981). The former method involves minimising the effect of the correction on the evaluation of the dominant exponent, and is a generalisation of the transform of Roskies (1981), whereas the latter method gives us a corroborating estimate of Δ_{1}. In the former method we transform the series $A(u)$ in u to ones in

$$
y=1-\left(1-u / u_{c}\right)^{\Delta_{1}}
$$

and then look at different Padé approximants to the function

$$
G_{\Delta}(y)=\Delta(y-1)(\mathrm{d} / \mathrm{d} y)(\ln A(y))=h-p /(1+p)
$$

where h is the dominant exponent and $p=a_{1} u_{c}^{\Delta_{1}} \Delta_{1}(y-1)^{\Delta_{\mathrm{i}} / \Delta}$. The correction term p becomes zero when $u=u_{\mathrm{c}}$ and $\Delta=\Delta_{1}$. We evaluate the Padé approximants for a range of guesses at u_{c} and Δ; for the correct Δ_{1} and u_{c} these Padé approximants should intersect and give a correct estimate for the dominant exponent. For a model where neither u_{c} nor Δ_{1} are known we search for the best convergence in the (u_{c}, h, Δ_{1}) space (Adler 1983a); here, however, we know the values of the dominant exponents via universality arguments and thus we search for the best Δ_{1} and u_{c} consistent with these. We note that a very strong check of the validity of our results is if the same u_{c} and Δ_{l} values are observed for all quantities studied, and if the best convergence is indeed found for the universal values of the dominant exponents. The latter method is believed (Adler et al 1983b) to be most reliable for Δ_{1} close to 1.0 . It involves studying Padé
approximants to the logarithmic derivative of $B(u)$ where

$$
B(u)=h A(u)+\left(u_{\mathrm{c}}-u\right) \mathrm{d} A(u) / \mathrm{d} u .
$$

This logarithmic derivative has a pole at u_{c} with residue $h+\Delta_{1}$; thus here the input into the calculation is u_{c} and h. We may again search for intersection regions of the different Padé approximants in the u_{c}, h, Δ_{1} plane and the Δ_{1} estimates from this method should be consistent with those of the former one.

We have analysed both the magnetisation and the susceptibility series with the former method and the magnetisation series with the latter method. The Padé results from the specific heat series were not sufficiently defect and problem free to justify further study. The results of the susceptibility analysis are presented in figure 1 and the results of the magnetisation analysis by the former method are presented in figure 2. We find that the best convergence for $\gamma=1.75$ and $\beta=0.125$ is found for $u_{c} \sim 0.55406$ in both cases. Furthermore Δ_{1} estimates are centred around 1.175 in both cases. We present the alternative magnetisation analysis for $u_{c}=0.55406$ in figure 3 and here observe that Δ_{1} is again close to or slightly above 1.175. By looking at plots for $0.5530<u_{c}<0.5542$ we find the Δ_{1} estimate to be

$$
1.0<\Delta_{1}<1.3
$$

In both cases Δ_{1} estimates decrease as u_{c} increases. Allowing for ranges $0.12<\beta<0.13$ and $1.7<\gamma<1.8$ we find $0.5538<u_{c}<0.5542$.

We note that in figures 1 and 2 the exponent values near $\Delta_{1}=1.0$ are similar to those obtained in the Padé study (see above), $\gamma \geqslant 1.76$ and $\beta \leqslant 0.1255$, thus supporting our statement that the Padé results are equivalent to $\Delta_{1}=1.0$.

We now consider the hard square series. The series that we consider in depth is that for the staggered density R (as a function of x, the inverse of the activity) which is the analogue of the magnetisation. If the hard square model indeed falls in the ϕ^{4} universality class these quantities should have the same dominant exponent β. The R
series (Baxter et al 1980) are 24 terms long and alternate regularly in sign. The results for $\rho_{c}=0.263413$ are shown in figure 4. We observe that there is an intersection region exactly at $\beta=\frac{1}{8}$ and that $1.2<\Delta_{1}<1.4$. If we consider the range $0.26341<u_{c}<0.26342$ we find $1.0<\Delta_{1}<1.3$. We have also studied R as a function of $\rho^{\prime}=1-2 \rho$, where ρ is the density.

Figure 3. Graph of β against Δ for the magnetisation of the spin-1 Ising model at $u_{c}=0.55406$, using the method of Adler et al (1981).

Figure 4. Graph of β against Δ for the hard square staggered density R at $\rho_{\mathrm{c}}=0.263413$.

This quantity should have a critical exponent of $\beta / 1-\alpha$; however, Baxter et al were unable to obtain the expected exponent of $\frac{1}{8}$ from a Padé analysis. We met with a similar lack of success, although for $\rho^{\prime} \sim 0.2648$ we obtain clear convergence with $1.0<\Delta_{1}<1.2$. We do not find clear convergence within the range 0.264 ± 0.002 given by Baxter et al although at the bottom of the range (~ 0.2638) the results are not inconsistent with $\beta=\frac{1}{8}$. We were unable to analyse the staggered susceptibility series with Padé methods.

4. New results for the spin $-\frac{1}{2}$ Ising model

In this section we present some previously unpublished results for the spin $-\frac{1}{2}$ Ising model; these will be used as a basis for comparison with the above.

In figure 5 we show a new analysis of Nickel's (1982) 34-term high temperature susceptibility series. Here we have a clear case of an analytic correction, and indeed excellent convergence is observed for $\gamma=1.75$ and $\Delta_{1}=1.0 \mathrm{We}$ also have convergence at $\gamma=1.75$ and $\Delta_{1}=0.5$ and again near $\gamma \sim 1.75$ and $\Delta_{1} \sim 0.33$. The convergences at $\gamma \sim 1.75$ for $\Delta_{1}=0.5$ and 0.33 appear to be 'resonances'. These have been previously obtained by Privman (1983), who studied test series with the method of Adler et al (1983b), but do not appear to have been seen previously in studies of 'real' systems. Privman (1983) explains that these 'resonances' at values of $\Delta_{1}=\Delta_{1} / k$, where $k=$ $2,3, \ldots$, are to be expected in this method; the surprising fact is that they were not previously observed. They have recently also been observed in the specific heat series for the Baxter-Wu model (Adler 1983b). Both these quantities are exactly solvable and apparently lack the type of terms that destroy (Privman 1983) the convergence regions for $k>1$. We note that all these 'resonances' fall at the same value of γ as the main convergence region near $\Delta_{1}=1$; and from the ratio of Δ_{1} values it is thus

Figure 5. Graph of γ against Δ for the high temperature susceptibility of the spin- $\frac{1}{2}$ Ising model at the critical temperature. The series is the 32 -term series of Nickel (1982).
easy to see which is the correct Δ_{1} value. The 'resonance' near $\Delta=0.5$ explains the observations of Roskies (1981), who found that applying the transformation

$$
y=1-\left(1-u / u_{c}\right)^{1 / 2}
$$

gave the correct values of u_{c} and γ for the spin $-\frac{1}{2}$ model in 2 D , as well as giving the RG values in 3D. One can now observe that this was a very fortunate coincidence, since Roskies' result implied $\Delta_{1}=0.5$ in 2D which is certainly not the case.

In figure 6 we show the $S=\frac{1}{2}$ magnetisation curve for a series of 20 terms. There is an intersection region near $\Delta_{1} \sim 1.0$ with 'resonances' near $\Delta_{1} \sim 0.1$ and 0.3 . The reason that we chose to display the 20 -term series is rather interesting. If we consider the highest central Padés in tables for successively longer series the results usually converge as the length of the series increases. Ratio analysis also becomes more

Figure 6. Graph of β against Δ for the magnetisation of the spin $-\frac{1}{2}$ Ising model at the exact u_{c}. We have obtained this 20 -term series by expansion of the exact magnetisation.
convergent as the series becomes longer. For Padé analysis this appears, however, only to be true up to a certain point. When working with very long (say, 40-term) series we do not always observe consistent results for high central approximants; two examples have been given in §3. This may be due to problems of machine accuracy (although we used 32 -figure accuracy throughout our analysis). A similar problem occurs when we take Padé approximants to the function $G_{\Delta}(y)$. If we look at any of the figures $1,2,4$ or 5 we see that certain Padés deviate suddenly from the general area and then return. For example, in figure 2 one Pade follows a path with β well below 0.124 near $\Delta_{1}=1$. Thus at $\Delta_{1}=1$ this Padé would have a residue $\ll 0.124$ in disagreement with the others. This phenomenon usually occurs quite rarely but its incidence increases as the length of series increases. The nature and location of the intersection region may improve at the same time. For series that are expansions of exact solutions (such as the spin $-\frac{1}{2}$ Ising or Baxter-Wu magnetisation) this phenomenon seems to occur for relatively few terms in the series, although the location of the intersection region does not seem to move (Adler 1983b). These deviations make the graphs rather confused and thus we present the 20 -term graph and in figure 7 we show the spin-1 magnetisation for the 20 -term series for comparison. We see that the curves are very different and there are no 'resonances' for Δ / k with $k>1$. For the 40 -term spin-1 series (figure 2) we do see a 'resonance' at 0.6 and this is to date the only non-exactly solved model where this phenomenon has been observed.

Figure 7. Graph of β against Δ for the magnetisation of the spin-1 Ising model at $u_{\mathrm{c}}=0.55406$. This graph is for a 20 -term series and comparison with figure 6 shows that the spin-1 and spin- $\frac{1}{2}$ magnetisations are quite different.

5. Discussion

In the preceding sections we have investigated the critical behaviour of the spin-1 and spin- $\frac{1}{2}$ Ising models and the hard square model, all of which are supposed to have the same dominant exponents. We have presented new series for the spin-1 and hard square models, and it is to be hoped that other methods of series analysis will be applied to these series in the near future.

We have shown that the spin-1 and hard square models exhibit critical behaviour of the form of equations (3.1) and (3.2) with $a_{1 M}$ and $a_{1 \chi} \neq 0$ and $1.0<\Delta_{1}<1.3$, whereas it is known for the spin $-\frac{1}{2}$ model that $a_{1 M}$ and $a_{1 \chi}=0$, and only $b_{1 M}$ and $b_{1 \chi} \neq 0$. The results of \& 4 demonstrate that our techniques are well capable of providing an accurate
description of the analytic correction terms that occur in the spin $-\frac{1}{2}$ model and thus can distinguish between the two possibilities.

There is a constant danger in this kind of work that higher correction terms influence the value of the first correction term and that the $\Delta_{1} \neq 1$ we claim to identify is in fact an analytic term. We feel that we can exclude this possibility on the basis that the spin- $\frac{1}{2}$ curves give a clear analytic ($\Delta=1$) term and, furthermore, the ϕ^{4} estimate (see §3) is $\Delta_{1} \sim 1.4$. Since we do not know u_{c} exactly we cannot prove this beyond all shadow of doubt, nor can we exclude the kind of behaviour recently envisaged (Adler 1983c) for the self-avoiding walk on the honeycomb lattice. This latter scenario finds both an intersection at $\Delta \sim 1.2$ and an intersection near either $\Delta=1$ or $\Delta<1$, whereas the field theoretic result is $\Delta_{1} \sim 1.2$. However, the strong agreement between the different methods of analysis and the comparison with $S=\frac{1}{2}$ suggests that in this case we do have $\Delta_{1}>1$ for the spin-1 and hard square models. We suggest $1.0<\Delta_{1}<1.3$.

A new u_{c} value for the spin-1 Ising model on the square lattice is also proposed. We suggest $0.5538<u_{c}<0.5542$ with a central value of $u_{c}=0.55406$ on the basis that the best agreement between the dominant exponents of the spin- 1 model and the spin- $\frac{1}{2}$ value is found for this value. This u_{c} value replaces the $u_{c}=0.5533 \pm 0.0012$ from Fox and Guttmann (1973).

Acknowledgments

This work was supported in part through NSF grant DMR 78-18808. One of us (JA) acknowledges the support of the Lady Davis Fellowship Foundation and of the Centre for Absorption in Science of the Government of Israel and thanks G Baker for the stimulating discussions and incisive criticism that led to the work reported in § 5. We thank M Revzen for comments on the manuscript, and B Nickel for a discussion on Padé analysis.

Appendix

New series for the spin-1 2D Ising magnetisation ($M(u)=\Sigma_{n} m_{n} u^{n}$), susceptibility ($\chi(u)=\Sigma_{n} x_{n} u^{n}$) and specific heat ($C_{v}=\Sigma_{n} c_{n} u^{n}$).

n	m_{n}	x_{n}	c_{n}
0	1	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	-1	1	16
5	0	0	0
6	0	0	0
7	-4	8	98
8	3	-6	-96
9	0	0	0
10	-30	90	1000
11	48	-144	-1936
12	-52	192	2064

n	m_{n}	x_{n}	c_{n}
13	-120	480	5070
14	368	-1372	-19012
15	-612	2676	31950
16	-254	1703	9024
17	2524	-11952	-152014
18	-6216	33316	383616
19	4040	-18900	-298186
20	11805	-64201	-832320
21	-49400	304580	3575922
22	68268	-401068	-5486624
23	14928	-97928	-1012506
24	-332511	2390637	27088992
25	734508	-5130048	-65115000
26	-568038	4264858	53200524
27	-1641320	13518716	147217176
28	6202774	-49117798	-608004040
29	-9239676	76725752	947874280
30	-2503162	29308994	189048900
31	42749908	-381566684	-4568526730
32	-99021392	915306452	11071969920
33	72255812	-629297848	-8871938526
34	215763902	-2149429218	-24714851124
35	-846523304	8606730256	102572776040
36	1235587854	-12408220218	-158562077760
37	315695688	-3956969996	-31309254516
38	-5897043012	65853427044	766255508396
39	13498636700	-149789004280	-1846277129736
40	-10063784956	110599540765	1479447715520
41	-30197995484	371951421160	4133610817968
42	117108185474	-1416033283010	-17054958273276
43	-172710840680	2102892657652	26339112604404
44	-46214867144	737547145862	5331885548880
45	824863285280	-10822599389744	-127080932186700

New series for the staggered susceptibility $\left(\chi^{+}(\rho)=\Sigma_{n=1}^{24} r_{n} \rho^{n}\right)$ of the hard square model as a function of density.

n	r_{n}	n	r_{n}
1	1	13	1411328
2	3	14	4184264
3	12	15	12325012
4	44	16	36138680
5	152	17	105508964
6	504	18	306540276
7	1628	19	886232460
8	5176	20	2552826468
9	16276	21	7342034404
10	50632	22	21113694620
11	155552	23	60683948480
12	471472	24	173931633140

References

Adler J 1983a J. Phys. A: Math. Gen. 163585

- 1983b Bulletin IPS 2934 and to appear

1983c J. Phys. A: Math. Gen. 16 L515
Adler J, Enting I G and Privman V 1983a J. Phys. A: Math. Gen. 161967
Adler J, Moshe M and Privman V 1981 J. Phys. A: Math. Gen. 14 L363
-_ 1982a Phys. Rev. B 261411

- 1982b Phys. Rev. B 263958

1983b in Percolation Structures and Processes ed G Deutscher, R Zallen and J Adler Ann. Israel Phys.
Soc. vol 5 (Bristol: Adam Hilger) p 397
Adler J and Privman V 1982 J. Phys. A: Math. Gen. 15 L417
Aharony A and Fisher M E 1980 Phys. Rev. Lett. 45679

- 1983 Phys. Rev. B 274349

Baker G A 1983 Private communication
Baker G A, Nickel B G and Meiron D 1978 Phys. Rev. B 171365
Baxter R J, Enting I G and Tsang S K 1980 J. Stat. Phys. 22465
Chen J H, Nickel B and Fisher M E 1982 Phys. Rev. Lett. 48630
Enting I G 1978a Aust. J. Phys. 31515

- 1978b J. Phys. A: Math. Gen. 11563
- 1980 J. Phys. A: Math. Gen. 133713

Fox P F and Guttmann A J 1973 J. Phys. C: Solid State Phys. 6913
Gaunt D and Fisher M E 1965 J. Chem. Phys. 432840
Hijmans J and de Boer J 1955 Physica 21471
Joyce G S 1975 Proc. R. Soc. A 345277
Le Guillou J C and Zinn-Justin J 1980 Phys. Rev. B 213976
Nickel B G 1982 in Phase Transitions, Proc. 1980 Cargese Summer Institute ed M Levy, J C Le Guillou and J Zinn-Justin (New York: Plenum)
Privman V 1983 Preprint
Roskies R 1981 Phys. Rev. B 245305
Sykes M F and Gaunt D S 1973 J. Phys. A: Math., Nucl. Gen. 6643
Wegner F J 1972 Phys. Rev. B 5 4529, 61891

